Poisson loss investigation

Author

Saideep Gona

Published

October 2, 2023

Code
import numpy as np
import seaborn as sns

def poisson_loss(input, target):
    return np.exp(input)-target*input
Code
inputs = [10**x for x in range(-2,2)]
log_inputs = [np.log10(x) for x in inputs]
targets = [poisson_loss(x, 1) for x in inputs]
Code
import torch

# loss = torch.nn.functional.poisson_nll_loss()



losses = [float(torch.nn.functional.poisson_nll_loss(torch.Tensor([x]), torch.Tensor([1]),log_input=False)) for x in inputs]
Code
losses
[4.615169525146484, 2.4025847911834717, 1.0, 7.697414875030518]
Code
sns.scatterplot(x=log_inputs, y=losses)
<Axes: >